Papers tagged ‘Surveillance’

The Declining Half-Life of Secrets and the Future of Signals Intelligence

Today we’re going to look at a position paper from the New America think tank’s Cybersecurity Initiative. If you’re someone like me, that descriptor probably raises at least four red flags: regarding anything to do with Internet security, there’s a tremendous gulf in groupthink between people associated with the US government, and people associated with commercial or pro bono development of computer stuff. Which is precisely why it’s useful to read papers from the other side of the gulf, like this one. (This particular think tank appears to be more on the left as that term is used in US politics. I haven’t dug into their other position papers.)

Swire starts by pointing out that the government’s understanding of secrecy was developed during the Cold War, when it was, frankly, much easier to keep secrets. Paper documents in an archive, which readers must physically visit, and demonstrate their need-to-know to the man with a gun at the entrance, are inherently difficult to duplicate. But that entire archive probably fits on a $50 thumbdrive today. In a similar vein, regular readers will recall the standard military teletype with its data transfer rate of 75 bits per second, from Limitations of End-to-End Encryption (1978).

Also, once data has been exfiltrated, it’s much easier to broadcast it, because there are lots more news organizations who might take an interest—or you can just post it online yourself and rely on the tremendously accelerated speed of gossip. These things together are what Swire means by the declining half-life of secrets: secrets have always been expected to get out eventually, but the time scale is no longer decades. The metaphor of a reduced half-life seems spot on to me: leakage of secrets is inherently probabilistic, so exponential decay is the simplest model, and should give people the right first-order intuition.

Swire then moves on to discussing the effects of that groupthink gulf I mentioned. This bit is weaker, because it’s plain that he doesn’t understand why people might prefer the world-view of EFF. But it’s accurate as far as it goes. People associated with the government are starting from the premise that revealing a secret, regardless of its contents, is the worst possible thing anyone can do. (I confess to not understanding how one comes to think this, myself. It probably has to do with one’s default idea of a secret being something that really could get someone killed if it were revealed, never mind that only a tiny fraction of all classified information is that dangerous.) In contrast, the world-view of EFF begins with the premise that most information should be published, and that an organization doing something in secret from the general public probably means it knows, institutionally, that the general public would not approve. And, therefore, that it shouldn’t be doing it in the first place. Since most of the technology community takes this position, the government has an increasingly large problem trying to persuade that community to cooperate with its own attitude, and (Swire says) this will only get worse.

The paper concludes with some fairly weaksauce recommendations: plan for the possibility of disclosure; take the impact on public opinion (should the secret be revealed) into account when planning secret operations; put more effort into arguing for surveillance. Basically, business as usual but with more media savvy. This may be the best one can hope for in the short term, but I have some policy suggestions of my own:

  • Apply Kerckhoffs’ Principle to all surveillance programs. The overall design of the system, its budget, the nature of the data collected, all relevant policies and procedures, everything except the collected data should be public knowledge, subject to normal public oversight (e.g. any Congressional hearings on the topic should be conducted in public and on the record), and debated in public prior to implementation—just like any other government program. If that would render the surveillance useless, the logic of Kerckhoffs’ principle says it was already useless. (I’ve made this point before, on my main blog.)

  • Abandon the desire for exceptional access. The technology community has spent 20+ years explaining over and over and over again why exceptional access is impractical and makes security worse for everyone. Government agencies refusing to accept that message is probably the single strongest reason why the groupthink gulf is as wide as it is.

  • More generally, whenever there is a tradeoff between offense and defense in computer security, choose defense. Design cryptographic standards that are secure for everyone, even if they happen to be enemies of the USA right now (or might be at some time in the future). Disclose all security-critical bugs to the vendors, so they get fixed, even if this means not being able to pull off another Stuxnet. Think of this as the Internet analogue of the SALT and START treaties.

  • Split the NSA in half. Merge the offensive signals intelligence mission into the CIA, or scrap it, I don’t care. Merge the defensive cryptographic and cryptanalytic mission into NIST, declassify and publish everything, and do all future work in public (Kerckhoffs’ Principle again). Make it a bedrock policy that this organization only does offensive research in support of defensive programs (e.g. to demonstrate the (un)soundness of a cipher).

I’m willing to listen to reasons not to do these things, as long as they do not boil down to we’re scared of hypothetical enemy X.

Encore: Lightweight Measurement of Web Censorship with Cross-Origin Requests

As I’ve mentioned a few times here before, one of the biggest problems in measurement studies of Web censorship is taking the measurement from the right place. The easiest thing (and this may still be difficult) is to get access to a commercial VPN exit or university server inside each country of interest. But commercial data centers and universities have ISPs that are often somewhat less aggressive about censorship than residential and mobile ISPs in the same country—we think. [1] And, if the country is big enough, it probably has more than one residential ISP, and there’s no reason to think they behave exactly the same. [2] [3] What we’d really like is to enlist spare CPU cycles on a horde of residential computers across all of the countries we’re interested in.

This paper proposes a way to do just that. The authors propose to add a script to globally popular websites which, when the browser is idle, runs tests of censorship. Thus, anyone who visits the website will be enlisted. The first half of the paper is a technical demonstration that this is possible, and that you get enough information out of it to be useful. Browsers put a bunch of restrictions on what network requests a script can make—you can load an arbitrary webpage in an invisible <iframe>, but you don’t get notified of errors and the script can’t see the content of the page; conversely, <img> can only load images, but a script can ask to be notified of errors. Everything else is somewhere in between. Nonetheless, the authors make a compelling case for being able to detect censorship of entire websites with high accuracy and minimal overhead, and a somewhat less convincing case for being able to detect censorship of individual pages (with lower accuracy and higher overhead). You only get a yes-or-no answer for each thing probed, but that is enough for many research questions that we can’t answer right now. Deployment is made very easy, a simple matter of adding an additional third-party script to websites that want to participate.

The second half of the paper is devoted to ethical and practical considerations. Doing this at all is controversial—in a box on the first page, above the title of the paper, there’s a statement from the SIGCOMM 2015 program committee, saying the paper almost got rejected because some reviewers felt it was unethical to do anything of the kind without informed consent by the people whose computers are enlisted to make measurements. SIGCOMM also published a page-length review by John Byers, saying much the same thing. Against this, the authors argue that informed consent in this case is of dubious benefit, since it does not reduce the risk to the enlistees, and may actually be harmful by removing any traces of plausible deniability. They also point out that many people would need a preliminary course in how Internet censorship works and how Encore measures it before they could make an informed choice about whether to participate in this research. Limiting the pool of enlistees to those who already have the necessary technical background would dramatically reduce the scale and scope of measurements. Finally they observe that the benefits of collecting this data are clear, whereas the risks are nebulous. In a similar vein, George Danezis wrote a rebuttal of the public review, arguing that the reviewers’ concerns are based on a superficial understanding of what ethical research in this area looks like.

Let’s be concrete about the risks involved. Encore modifies a webpage such that web browsers accessing it will, automatically and invisibly to the user, also access a number of unrelated webpages (or resources). By design, those unrelated webpages contain material which is considered unacceptable, perhaps to the point of illegality, in at least some countries. Moreover, it is known that these countries mount active MITM attacks on much of the network traffic exiting the country, precisely to detect and block access to unacceptable material. Indeed, the whole point of the exercise is to provoke an observable response from the MITM, in order to discover what it will and won’t respond to.

The MITM has the power to do more than just block access. It almost certainly records the client IP address of each browser that accesses undesirable material, and since it’s operated by a state, those logs could be used to arrest and indict people for accessing illegal material. Or perhaps the state would just cut off their Internet access, which would be a lesser harm but still a punishment. It could also send back malware instead of the expected content (we don’t know if that has ever happened in real life, but very similar things have [4]), or turn around and mount an attack on the site hosting the material (this definitely has happened [5]). It could also figure out that certain accesses to undesirable material are caused by Encore and ignore them, causing the data collected to be junk, or it could use Encore itself as an attack vector (i.e. replacing the Encore program with malware).

In addition to the state MITM, we might also want to worry about other adversaries in a position to monitor user behavior online, such as employers, compromised coffee shop WiFi routers, and user-tracking software. Employers may have their own list of material that people aren’t supposed to access using corporate resources. Coffee shop WiFi is probably interested in finding a way to turn your laptop into a botnet zombie; any unencrypted network access is a chance to inject some malware. User-tracking software might become very confused about what someone’s demographic is, and start hitting them with ads that relate to whatever controversial topic Encore is looking for censorship of. (This last might actually be a Good Thing, considering the enormous harms behavioral targeting can do. [6])

All of these are harm to someone. It’s important to keep in mind that except for poisoning the data collected by Encore (harm to the research itself) all of them can happen in the absence of Encore. Malware, ad networks, embedded videos, embedded like buttons, third-party resources of any kind: all of these can and do cause a client computer to access material without its human operator’s knowledge or consent, including accesses to material that some countries consider undesirable. Many of them also offer an active MITM the opportunity to inject malware.

The ethical debate over this paper has largely focused on increased risk of legal, or quasilegal, sanctions taken against people whose browsers were enlisted to run Encore tests. I endorse the authors’ observation that informed consent would actually make that risk worse. Because there are so many reasons a computer might contact a network server without its owner’s knowledge, people already have plausible deniability regarding accesses to controversial material (i.e. I never did that, it must have been a virus or something). If Encore told its enlistees what it was doing and gave them a chance to opt out, it would take that away.

Nobody involved in the debate knows how serious this risk really is. We do know that many countries are not nearly as aggressive about filtering the Internet as they could be, [7] so it’s reasonable to think they can’t be bothered to prosecute people just for an occasional attempt to access stuff that is blocked. It could still be that they do prosecute people for bulk attempts to access stuff that is blocked, but Encore’s approach—many people doing a few tests—would tend to avoid that. But there’s enough uncertainty that I think the authors should be talking to people in a position to know for certain: lawyers and activists from the actual countries of interest. There is not one word either in the papers or the reviews to suggest that anyone has done this. The organizations that the authors are talking to (Citizen Lab, Oxford Internet Institute, the Berkman Center) should have appropriate contacts already or be able to find them reasonably quickly.

Meanwhile, all the worry over legal risks has distracted from worrying about the non-legal risks. The Encore authors are fairly dismissive of the possibility that the MITM might subvert Encore’s own code or poison the results; I think that’s a mistake. They consider the extra bandwidth costs Encore incurs, but they don’t consider the possibility of exposing the enlistee to malware on a page (when they load an entire page). More thorough monitoring and reportage on Internet censorship might cause the censor to change its behavior, and not necessarily for the better—for instance, if it’s known that some ISPs are less careful about their filtering, that might trigger sanctions against them. These are just the things I can think of off the top of my head.

In closing, I think the controversy over this paper is more about the community not having come to an agreement about its own research ethics than it is about the paper itself. If you read the paper carefully, the IRB at each author’s institution did not review this research. They declined to engage with it. This was probably a correct decision from the board’s point of view, because an IRB’s core competency is medical and psychological research. (They’ve come in for criticism in the past for reviewing sociological studies as if they were clinical trials.) They do not, in general, have the background or expertise to review this kind of research. There are efforts underway to change that: for instance, there was a Workshop on Ethics in Networked Systems Research at the very same conference that presented this paper. (I wish I could have attended.) Development of a community consensus here will, hopefully, lead to better handling of future, similar papers.

Keys Under Doormats: Mandating insecurity by requiring government access to all data and communications

Today’s paper is not primary research, but an expert opinion on a matter of public policy; three of its authors have posted their own summaries [1] [2] [3], the general press has picked it up [4] [5] [6] [7] [8], and it was mentioned during Congressional hearings on the topic [9]. I will, therefore, only briefly summarize it, before moving on to some editorializing of my own. I encourage all of you to read the paper itself; it’s clearly written, for a general audience, and you can probably learn something about how to argue a position from it.

The paper is a direct response to FBI Director James Comey, who has for some time been arguing that data storage and communications systems must be designed for exceptional access by law enforcement agencies (quote from paper); his recent Lawfare editorial can be taken as representative. British politicians have also been making similar noises (see the above general-press articles). The paper, in short, says that this would cause much worse technical problems than it solves, and that even if, by some magic, those problems could be avoided, it would still be a terrible idea for political reasons.

At slightly more length, exceptional access means: law enforcement agencies (like the FBI) and espionage agencies (like the NSA) want to be able to wiretap all communications on the ’net, even if those communications are encrypted. This is a bad idea technically for the same reasons that master-key systems for doors can be more trouble than they’re worth. The locks are more complicated, and easier to pick than they would be otherwise. If the master key falls into the wrong hands you have to change all the locks. Whoever has access to the master keys can misuse them—which makes the keys, and the people who control them, a target. And it’s a bad idea politically because, if the USA gets this capability, every other sovereign nation gets it too, and a universal wiretapping capability is more useful to a totalitarian state that wants to suppress the political opposition, than it is to a detective who wants to arrest murderers. I went into this in more detail toward the end of my review of RFC 3514.

I am certain that James Comey knows all of this, in at least as much detail as it is explained in the paper. Moreover, he knows that the robust democratic debate he calls for already happened, in the 1990s, and wiretapping lost. [10] [11] [12] Why, then, is he trying to relitigate it? Why does he keep insisting that it must somehow be both technically and politically feasible, against all evidence to the contrary? Perhaps most important of all, why does he keep insisting that it’s desperately important for his agency to be able to break encryption, when it was only an obstacle nine times in all of 2013? [13]

On one level, I think it’s a failure to understand the scale of the problems with the idea. On the technical side, if you don’t live your life down in the gears it’s hard to bellyfeel the extent to which everything is broken and therefore any sort of wiretap requirement cannot help but make the situation worse. And it doesn’t help, I’m sure, that Comey has heard (correctly) that what he wants is mathematically possible, so he thinks everyone saying this is impossible is trying to put one over on him, rather than just communicate this isn’t practically possible.

The geopolitical problems with the idea are perhaps even harder to convey, because the Director of the FBI wrestles with geopolitical problems every day, so he thinks he does know the scale there. For instance, the paper spends quite some time on a discussion of the jurisdictional conflict that would naturally come up in an investigation where the suspect is a citizen of country A, the crime was committed in B, and the computers involved are physically in C but communicate with the whole world—and it elaborates from there. But we already have treaties to cover that sort of investigation. Comey probably figures they can be bent to fit, or at worst, we’ll have to negotiate some new ones.

If so, what he’s missing is that he’s imagining too small a group of wiretappers: law enforcement and espionage agencies from countries that are on reasonably good terms with the USA. He probably thinks export control can keep the technology out of the hands of countries that aren’t on good terms with the USA (it can’t) and hasn’t even considered non-national actors: local law enforcement, corporations engaged in industrial espionage, narcotraficantes, mafiosi, bored teenagers, Anonymous, religious apocalypse-seekers, and corrupt insiders in all the above. People the USA can’t negotiate treaties with. People who would already have been thrown in jail if anyone could make charges stick. People who may not even share premises like what good governance or due process of law or basic human decency mean. There are a bit more than seven billion people on the planet today, and this is the true horror of the Internet: roughly 40% of those people [14] could, if they wanted, ruin your life, right now. It’s not hard. [15] (The other 60% could too, if they could afford to buy a mobile, or at worst a satellite phone.)

But these points, too, have already been made, repeatedly. Why does none of it get through? I am only guessing, but my best guess is: the War On Some Drugs [16] and the aftermath of 9/11 [17] (paywalled, sorry; please let me know if you have a better cite) have both saddled the American homeland security complex with impossible, Sisyphean labors. In an environment where failure is politically unacceptable, yet inevitable, the loss of any tool—even if it’s only marginally helpful—must seem like an existential threat. To get past that, we would have to be prepared to back off on the must never happen again / must be stopped at all cost posturing; the good news is, that has an excellent chance of delivering better, cheaper law enforcement results overall. [18]

What Deters Jane from Preventing Identification and Tracking on the Web?

If you do a survey, large majorities of average people will say they don’t like the idea of other people snooping on what they do online. [1] [2] Yet, the existing bolt-on software that can prevent such snooping (at least somewhat) doesn’t get used by nearly as many people. The default explanation for this is that it’s because the software is hard to install and use correctly. [3] [4]

This paper presents a complementary answer: maybe people don’t realize just how ubiquitous or invasive online snooping is, so the benefit seems not worth the hassle. The authors interviewed a small group about their beliefs concerning identification and tracking. (They admit that the study group skews young and technical, and plan to broaden the study in the future.) Highlights include: People are primarily concerned about data they explicitly provide to some service—social network posts, bank account data, buying habits—and may not even be aware that ad networks and the like can build up comprehensive profiles of online activity even if all they do is browse. They often have heard a bunch of fragmentary information about cookies and supercookies and IP addresses and so on, and don’t know how this all fits together or which bits of it to worry about. Some people thought that tracking was only possible for services with which they have an account, while they are logged in (so they log out as soon as they’re done with the service). There is also general confusion about which security threats qualify as identification and tracking—to be fair, just about all of them can include some identification or tracking component. The consequences of being tracked online are unclear, leading people to underestimate the potential harm. And finally, many of the respondents assume they are not important people and therefore no one would bother tracking them. All of these observations are consistent with earlier studies in the same vein, e.g. Rick Wash’s Folk Models of Home Computer Security.

The authors argue that this means maybe the usability problems of the bolt-on privacy software are overstated, and user education about online security threats (and the mechanism of the Internet in general) should have higher priority. I think this goes too far. It seems more likely to me that because people underestimate the risk and don’t particularly understand how the privacy software would help, they are not motivated to overcome the usability problems. I am also skeptical of the effectiveness of user education. The mythical average users may well feel, and understandably so, that they should not need to know exactly what a cookie is, or exactly what data gets sent back and forth between their computers and the cloud, or the internal structure of that cloud. Why is it that the device that they own is not acting in their best interest in the first place?